Using Machine Learning to Predict POI Occupancy to Reduce Overcrowding
Author:
Abstract
Due to the rapid growth of the tourism industry, associated effects like overcrowding, overtourism, and increasing greenhouse gas emissions lead to unsustainable development. A prerequisite for avoiding those adverse effects is the prediction of occupancy. The present study elaborates on the applicability and performance of various prediction models by taking a case study of beach occupancy data in Scharbeutz, Germany. The case study compares different machine learning models once as supervised machine learning models and once as time series models with a persistence model. XGBoost and Random Forest as time series demonstrate the most accurate prediction, followed by the supervised XGBoost model. However, the short prediction span of time series models is a disadvantage for longer-term visitor management to avoid the explained unsustainable effects through steering measures, so depending on the use case, the XGBoost model is to be favoured.
- Citation
- BibTeX
Bollenbach, Je., Neubig, St., Hein, An., Keller, Ro. & Krcmar, He.,
(2022).
Using Machine Learning to Predict POI Occupancy to Reduce Overcrowding.
In:
Demmler, D., Krupka, D. & Federrath, H.
(Hrsg.),
INFORMATIK 2022.
Gesellschaft für Informatik, Bonn.
(S. 393-408).
DOI: 10.18420/inf2022_34
@inproceedings{mci/Bollenbach2022,
author = {Bollenbach,Jessica AND Neubig,Stefan AND Hein,Andreas AND Keller,Robert AND Krcmar,Helmut},
title = {Using Machine Learning to Predict POI Occupancy to Reduce Overcrowding},
booktitle = {INFORMATIK 2022},
year = {2022},
editor = {Demmler, Daniel AND Krupka, Daniel AND Federrath, Hannes} ,
pages = { 393-408 } ,
doi = { 10.18420/inf2022_34 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
author = {Bollenbach,Jessica AND Neubig,Stefan AND Hein,Andreas AND Keller,Robert AND Krcmar,Helmut},
title = {Using Machine Learning to Predict POI Occupancy to Reduce Overcrowding},
booktitle = {INFORMATIK 2022},
year = {2022},
editor = {Demmler, Daniel AND Krupka, Daniel AND Federrath, Hannes} ,
pages = { 393-408 } ,
doi = { 10.18420/inf2022_34 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
nawersys_06.pdf | 356.4Kb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/inf2022_34
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
DOI: 10.18420/inf2022_34
ISBN: 978-3-88579-720-3
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2022
Language: (en)