Scalable N-Way Model Matching Using Multi-Dimensional Search Trees - Summary
Abstract
In this work, we report about recent research on n-way model matching, originally published at the International Conference on Model Driven Engineering Languages and Systems (MODELS) 2021. Model matching algorithms are used to identify common elements in input models, which is a fundamental precondition for many software engineering tasks, such as merging software variants or views. If there are multiple input models, an n-way matching algorithm that simultaneously processes all models typically produces better results than the sequential application of two-way matching algorithms. However, existing algorithms for n-way matching do not scale well, as the computational effort grows fast in the number of models and their size. We propose a scalable n-way model matching algorithm, which uses multi-dimensional search trees for efficiently finding suitable match candidates through range queries. We implemented our generic algorithm named RaQuN (Range Queries on N input models) in Java, and empirically evaluate the matching quality and runtime performance on several datasets of different origin and model type. Compared to the state-of-the-art, our experimental results show a performance improvement by an order of magnitude, while delivering matching results of better quality.
- Citation
- BibTeX
Schultheiß, A., Bittner, P. M., Thüm, T. & Kehrer, T.,
(2022).
Scalable N-Way Model Matching Using Multi-Dimensional Search Trees - Summary.
In:
Grunske, L., Siegmund, J. & Vogelsang, A.
(Hrsg.),
Software Engineering 2022.
Bonn:
Gesellschaft für Informatik e.V..
(S. 83-84).
DOI: 10.18420/se2022-ws-028
@inproceedings{mci/Schultheiß2022,
author = {Schultheiß, Alexander AND Bittner, Paul Maximilian AND Thüm, Thomas AND Kehrer, Timo},
title = {Scalable N-Way Model Matching Using Multi-Dimensional Search Trees - Summary},
booktitle = {Software Engineering 2022},
year = {2022},
editor = {Grunske, Lars AND Siegmund, Janet AND Vogelsang, Andreas} ,
pages = { 83-84 } ,
doi = { 10.18420/se2022-ws-028 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Schultheiß, Alexander AND Bittner, Paul Maximilian AND Thüm, Thomas AND Kehrer, Timo},
title = {Scalable N-Way Model Matching Using Multi-Dimensional Search Trees - Summary},
booktitle = {Software Engineering 2022},
year = {2022},
editor = {Grunske, Lars AND Siegmund, Janet AND Vogelsang, Andreas} ,
pages = { 83-84 } ,
doi = { 10.18420/se2022-ws-028 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/se2022-ws-028
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISBN: 978-3-88579-714-2
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2022
Language: (en)
Content Type: Text/Conference Paper