Trace Link Recovery Using Semantic Relation Graphs and Spreading Activation
Abstract
The paper was first published at the 28th IEEE International Requirements Engineering Conference in 2020. Trace Link Recovery tries to identify and link related existing requirements with each other to support further engineering tasks. Existing approaches are mainly based on algebraic Information Retrieval or machine-learning. Machine-learning approaches usually demand reasonably large and labeled datasets to train. Algebraic Information Retrieval approaches like distance between tf-idf scores also work on smaller datasets without training but are limited in providing explanations for trace links. In this work, we present a Trace Link Recovery approach that is based on an explicit representation of the content of requirements as a semantic relation graph and uses Spreading Activation to answer trace queries over this graph. Our approach is fully automated including an NLP pipeline to transform unrestricted natural language requirements into a graph. We evaluate our approach on five common datasets. Depending on the selected configuration, the predictive power strongly varies. With the best tested configuration, the approach achieves a mean average precision of 40% and a Lag of 50%. Even though the predictive power of our approach does not outperform state-of-the-art approaches, we think that an explicit knowledge representation is an interesting artifact to explore in Trace Link Recovery approaches to generate explanations and refine results.
- Citation
- BibTeX
Schlutter, A. & Vogelsang, A.,
(2021).
Trace Link Recovery Using Semantic Relation Graphs and Spreading Activation.
In:
Koziolek, A., Schaefer, I. & Seidl, C.
(Hrsg.),
Software Engineering 2021.
Bonn:
Gesellschaft für Informatik e.V..
(S. 95-96).
DOI: 10.18420/SE2021_35
@inproceedings{mci/Schlutter2021,
author = {Schlutter, Aaron AND Vogelsang, Andreas},
title = {Trace Link Recovery Using Semantic Relation Graphs and Spreading Activation},
booktitle = {Software Engineering 2021},
year = {2021},
editor = {Koziolek, Anne AND Schaefer, Ina AND Seidl, Christoph} ,
pages = { 95-96 } ,
doi = { 10.18420/SE2021_35 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Schlutter, Aaron AND Vogelsang, Andreas},
title = {Trace Link Recovery Using Semantic Relation Graphs and Spreading Activation},
booktitle = {Software Engineering 2021},
year = {2021},
editor = {Koziolek, Anne AND Schaefer, Ina AND Seidl, Christoph} ,
pages = { 95-96 } ,
doi = { 10.18420/SE2021_35 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/SE2021_35
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
DOI: 10.18420/SE2021_35
ISBN: 978-3-88579-704-3
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2021
Language: (en)
Content Type: Text/ConferencePaper