Multi-Perspective Clustering of Process Execution Traces
Abstract
Process mining techniques enable extracting process models from process event logs. Problems can arise if process mining is applied to event logs of flexible processes that are extremely heterogeneous. Here, trace clustering can be used to reduce the complexity of logs. Common techniques use isolated criteria such as activity profiles for clustering. Especially in flexible environments, however, additional data attributes stored in event logs are a source of unused knowledge for trace clustering. In this paper, we present a multi-perspective trace clustering approach that improves the homogeneity of trace subsets. Our approach provides an integrated definition of similarity between traces by defining a distance measure that combines information about executed activities, performing resources, and data values. The evaluation with real-life event logs, one from a hospital and one with traffic fine data, shows that the homogeneity of the resulting clusters can be significantly improved compared to existing techniques.
- Citation
- BibTeX
Jablonski, S., Röglinger, M., Schönig, S. & Wyrtki, K. M.,
(2019).
Multi-Perspective Clustering of Process Execution Traces.
Enterprise Modelling and Information Systems Architectures (EMISAJ) – International Journal of Conceptual Modeling: Vol. 14, Nr. 2.
Berlin:
Gesellschaft für Informatik e.V..
(S. 1-22).
DOI: 10.18417/emisa.14.2
@article{mci/Jablonski2019,
author = {Jablonski, Stefan AND Röglinger, Maximilian AND Schönig, Stefan AND Wyrtki, Katrin Maria},
title = {Multi-Perspective Clustering of Process Execution Traces},
journal = {Enterprise Modelling and Information Systems Architectures (EMISAJ) – International Journal of Conceptual Modeling},
volume = {14},
number = {2},
year = {2019},
,
pages = { 1-22 } ,
doi = { 10.18417/emisa.14.2 }
}
author = {Jablonski, Stefan AND Röglinger, Maximilian AND Schönig, Stefan AND Wyrtki, Katrin Maria},
title = {Multi-Perspective Clustering of Process Execution Traces},
journal = {Enterprise Modelling and Information Systems Architectures (EMISAJ) – International Journal of Conceptual Modeling},
volume = {14},
number = {2},
year = {2019},
,
pages = { 1-22 } ,
doi = { 10.18417/emisa.14.2 }
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
emisaj_14_2.pdf | 675.2Kb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18417/emisa.14.2
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
DOI: 10.18417/emisa.14.2
ISSN: 1866-3621
xmlui.MetaDataDisplay.field.date: 2019
Language: (en)
Content Type: Text/Journal Article